Rings, Polymers & Analysis Chromatography MARK SCHEME

1. (i) adsorption \checkmark

ALLOW partition OR adsorbtion IGNORE solubility OR desorption DO NOT ALLOW absorption

(ii) measure how far each spot travels relative to the solvent front or calculate the $R_{\rm f}$ value \checkmark

compare $R_{\rm f}$ values to those for known amino acids \checkmark

ALLOW compare R_f values to database **ALLOW** compare to known amino acids **DO NOT ALLOW** retention times for first mark, but the 2nd mark would be available as \checkmark ECF **ALLOW** alternative approach: on the same plate compare position of spots \checkmark with known amino acids \checkmark

(iii) (amino acids won't separate because) similar compounds have similar $R_{\rm f}$ (values) \checkmark

ALLOW spots often overlap **OR** don't (fully) separate **ALLOW** they have similar R_f (values) or similar adsoptions or similar retention times ECF to (ii)

[4]

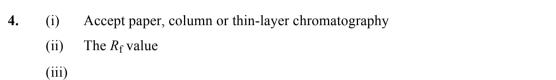
1

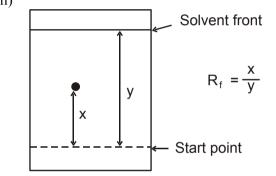
2

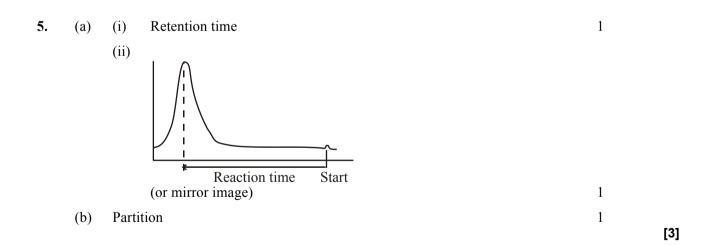
1

3

1


3


2


- 2. (i) one amide link shown correctly (1) glycine and phenylalanine parts shown correctly (1) proline linked correctly (1)
 - (ii) 6 **(1)**
 - (iii) gas/liquid chromatograph separates the tripeptides (1)
 mass spectrometer produces a distinctive fragmentation pattern (1)
 identification by computer using a spectral database (1)
- (a) R_f value is distance moved by a component/spot/solute divided by distance moved by solvent. (1)
 Retention time is the time between injection and emergence (or detection) of a component. (1)

[7]

(b)	(i)	Partition / adsorption (1)	1	
	(ii)	Role of gas: carrier gas / mobile phase / to carry to sample through the chromatography column (1)		
		Role of liquid: stationary phase (1)	2	
	(iii)	Trace with two peaks drawn (1)	1	
	(iv)	Measure area under each peak (1)		
		Find total area (1)		
		% = (area of one peak/total area) \times 100% (1)	3	[9]

PhysicsandMathsTutor.com

[3]